Abstract

To investigate the role of crystal anisotropy on the elastic–plastic deformation of BCC single crystals at high shock stresses, molybdenum (Mo) single crystals were shock compressed along the [100], [111], and [110] orientations at elastic impact stresses between 20 and 110 GPa. Laser interferometry was used to measure shock wave velocities and particle velocity histories. Along the [100] and [111] orientations, elastic–plastic waves (two wave structure) were observed up to 110 GPa. Along the [110] orientation, the two wave structure was observed only up to 90 GPa. The measured elastic wave amplitudes were analyzed to determine crystal anisotropy effects, impact stress dependence, and the activated slip systems on the Hugoniot elastic limit. The findings from our work have provided insight into the role of crystal anisotropy on the elastic–plastic deformation under shock compression at high stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.