Abstract
We report on the possible synthesis of the theoretically predicted β-phase of carbon nitride (C 3N 4) by shock compression of sodium dicyanamide mixed with sodium azide and carbon tetra-iodide. Shock-compression experiments were performed on starting precursor blended with ∼95 wt.% Cu powder, statically pressed in steel capsules. The capsules were impacted under conditions of constant shock amplitude, but varying shock-pulse duration. TEM analysis of the recovered shock-compressed residue showed crystallites of a cubic C–N compound dispersed in an amorphous matrix, with overall yield of the crystalline phase being a function of the shock-pulse duration. Parallel-detection electron energy loss spectroscopy of the nitrogen-containing crystallites revealed diamond-like sp 3 bonding. Infra-red spectroscopy indicated absorption lines in regions calculated to be appropriate for β-C 3N 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.