Abstract

This paper describes an experimental comparison of two passive approaches for controlling the shock interaction with a turbulent boundary layer: low-profile vortex generators and a passive cavity (porous wall with a shallow cavity underneath). This investigation is the first known direct comparison of the two methods wherein the advantages and disadvantages of both are revealed. The experiments were conducted with a normal shock wave in an axisymmetric wind tunnel. The shock strength (M = 1.56-1.65) was of sufficient magnitude to induce a large separation bubble, thus causing substantial boundary-layer losses. The low-profile vortex generators were found to significantly suppress the shock-induced separation and improve the boundary-layer characteristics downstream of the shock. However, the suppression of the separation bubble decreased the extent of the low total pressure loss region associated with the lambda foot shock system which results in a lower mass-averaged total pressure downstream of the shock. The passive cavity substantially reduced the total pressure loss through the shock system (and thus wave drag) by causing a more isentropic compression over a larger lateral extent. However, the boundary-layer losses downstream of the shock were significantly increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.