Abstract

During locomotion, each step generates a shock wave that travels through the body toward the head. Without mechanisms for attenuation, repeated shocks can lead to pathology. Shock attenuation (SA) in the lower limb has been well studied, but little is known about how posture affects SA in the spine. To test the hypothesis that lumbar lordosis (LL) contributes to SA, 27 adults (14 male, 13 female) walked and ran on a treadmill. Two lightweight, tri-axial accelerometers were affixed to the skin overlying T12/L1 and L5/S1. Sagittal plane accelerations were analyzed using power spectral density analysis, and lumbar SA was assessed within the impact-related frequency range. 3D kinematics quantified dynamic and resting LL. To examine the effects of intervertebral discs on spinal SA, supine MRI scans were used to measure disc morphology. The results showed no association between LL and SA during walking, but LL correlated with SA during running (P<0.01, R2=0.30), resulting in as much as 64% reduction in shock signal power among individuals with the highest LL. Patterns of lumbar spinal motion partially explain differences in SA: larger amplitudes of LL angular displacement and slower angular displacement velocity during running were associated with greater lumbar SA (P=0.008, R2=0.41). Intervertebral discs were associated with greater SA during running (P=0.02, R2=0.22) but, after controlling for disc thickness, LL remained strongly associated with SA (P=0.001, R2=0.44). These findings support the hypothesis that LL plays an important role in attenuating impact shocks transmitted through the human spine during high-impact, dynamic activities such as running.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.