Abstract

Shock and vibration testing of an Active Magnetic Bearing (AMB) supported energy storage flywheel is presented. The flywheel is under development at the University of Texas - Center for Electromechanics (UTCEM) for application in a transit bus. The flywheel is gimbal mounted to reduce the gyroscopic forces transmitted to the magnetic bearings during pitching and rolling motions of the bus. The system was placed on a hydraulic terrain simulator and driven through pitch, roll and shock motions equivalent to 150% of maximum expected bus frame values. Although the AMB control approach was originally developed specifically to ensure rotordynamic stability, relative rotor/housing motion was typically less than half of the backup bearing clearance under all tested conditions. Test results are presented and compared to analytical predictions for the 35,000 rpm nominal operating speed. The impact of the AMB control algorithm is discussed relative to the input forcing function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.