Abstract

Candida albicans is an opportunistic, dimorphic fungus that causes candidiasis in immunocompromised people. C. albicans forms specialized structures called microcolonies that are important for surface adhesion and virulence. Microcolonies form in response to specific environmental conditions and require glycolytic substrates for optimal growth. However, fungal signaling pathways involved in sensing and transmitting these environmental cues to induce microcolony formation have not been identified. Here, we show that the C. albicans Ras1-cAMP cascade is required for microcolony formation, while the Cek1-MAP kinase pathway is not required, and Hog1 represses microcolony formation. The membrane protein Sho1, known to regulate the Cek1 pathway in yeasts, was indispensable for C. albicans microcolony formation but regulated the Ras1-cAMP pathway instead, based upon diminished intracellular levels of cAMP and reduced expression of core microcolony genes, including HWP1, PGA10, and ECE1, in C. albicanssho1Δ cells. Based upon predicted physical interactions between Sho1 and the glycolytic enzymes Pfk1, Fba1, Pgk1, and Cdc19, we hypothesized that Sho1 regulates Ras1-cAMP by establishing cellular energy levels produced by glycolysis. Indeed, microcolony formation was restored in C. albicanssho1Δ cells by addition of exogenous intermediates of glycolysis, including downstream products of each predicted interacting enzyme (fructose 1,6 bisphosphate, glyceraldehyde phosphate, 3-phosphoglyceric acid, and pyruvate). Thus, C. albicans Sho1 is an upstream regulator of the Ras1-cAMP signaling pathway that connects glycolytic metabolism to the formation of pathogenic microcolonies.IMPORTANCEC. albicans microcolonies form extensive hyphal structures that enhance surface adherence and penetrate underlying tissues to promote fungal infections. This study examined the environmental conditions that promote microcolony formation and how these signals are relayed, in order to disrupt signaling and reduce pathogenesis. We found that a membrane-localized protein, Sho1, is an upstream regulator of glycolysis and required for Ras1-cAMP signaling. Sho1 controlled the Ras1-dependent expression of core microcolony genes involved in adhesion and virulence. This new regulatory function for Sho1 linking glycolysis to microcolony formation reveals a novel role for this fungal membrane protein.

Highlights

  • Candida albicans is an opportunistic, dimorphic fungus that causes candidiasis in immunocompromised people

  • Addition of F1,6-BP to 0.2% acetate restored microcolony formation; addition of pyruvate did not (Fig. 2C). These results suggested that energy produced from glycolysis is needed for microcolony formation but that the tricarboxylic acid (TCA) cycle alone is not sufficient to support microcolony formation in C. albicans

  • Microcolony formation in C. albicans represents a unique adaptation of this virulent fungal pathogen for colonization of host tissues

Read more

Summary

Introduction

Candida albicans is an opportunistic, dimorphic fungus that causes candidiasis in immunocompromised people. C. albicans Sho is an upstream regulator of the Ras1-cAMP signaling pathway that connects glycolytic metabolism to the formation of pathogenic microcolonies. IMPORTANCE C. albicans microcolonies form extensive hyphal structures that enhance surface adherence and penetrate underlying tissues to promote fungal infections. Sho controlled the Ras1-dependent expression of core microcolony genes involved in adhesion and virulence This new regulatory function for Sho linking glycolysis to microcolony formation reveals a novel role for this fungal membrane protein. In C. albicans, Sfl integrates the tricarboxylic acid (TCA) cycle and the Ras1-cAMP signaling pathway [9] to regulate hyphal growth. It is not known whether these pathways regulate C. albicans microcolony formation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.