Abstract

Tomato powdery mildew, caused by Oidium neolycopersici, is a fungal disease that results in severe yield loss in infected plants. Herein, we describe the function of a class of proteins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which play a role in vesicle transport during defense signaling. To date, there have been no reports describing the function of tomato SNAREs during resistance signaling to powdery mildew. Using a combination of classical plant pathology-, genetics-, and cell biology-based approaches, we evaluate the role of ShNPSN11 in resistance to the powdery mildew pathogen O. neolycopersici. Quantitative RT-PCR analysis of tomato SNAREs revealed that ShNPSN11 mRNA accumulation in disease-resistant varieties was significantly increased following pathogen, compared with susceptible varieties, suggesting a role during induced defense signaling. Using in planta subcellular localization, we demonstrate that ShNPSN11 was primarily localized at the plasma membrane, consistent with the localization of SNARE proteins and their role in defense signaling and trafficking. Silencing of ShNPSN11 resulted in increased susceptibility to O. neolycopersici, with pathogen-induced levels of H2O2 and cell death elicitation in ShNPSN11-silenced lines showing a marked reduction. Transient expression of ShNPSN11 did not result in the induction of a hypersensitive cell death response or suppress cell death induced by BAX. Taken together, these data demonstrate that ShNPSNl11 plays an important role in defense activation and host resistance to O. neolycopersici in tomato LA1777.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call