Abstract

Long-span suspension bridges carrying both highway and railway have been built in wind-prone regions. The estimation of fatigue damage of such bridges under the long-term combined action of railway, highway, and wind loading represents a challenging task in consideration of randomness in multiple types of loading. This study presents a framework for fatigue reliability analysis of multiloading long-span suspension bridges equipped with structural health monitoring systems (SHMS), and the Tsing Ma suspension bridge in Hong Kong is taken as a case study. A limit-state function in the daily sum of m-power stress ranges is first defined for fatigue reliability analysis. Probabilistic models of railway, highway, and wind loading are established on the basis of the measurement data acquired from the SHMS. The daily stochastic stress responses induced by the multiple types of loading are simulated at the fatigue-critical locations of the bridge deck by using the finite-element method and Monte Carlo simulation (...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.