Abstract
A bonded joint between an aluminum plate and CFRP plate (7 plies) is considered using a titanium spar. The bonding is ensured by double sided adhesive that is prone to degradation with aging structures. The problem is to detect the disbond occurring at the CFRP plate/titanium spar interface using guided waves generated by piezoceramic transducers (PZT) bonded on the CFRP plate. The objective of the present work is to optimize the SHM configuration (PZT location, Lamb wave mode, size and shape of the PZT) for pitch and catch measurements within the bond. 1D, 2D and 3D numerical simulations of the instrumented structure were performed to optimize the SHM configuration. It appears that the rectangular shape can ensure a plane wave front within the bond, since the circular shape generates complex wave fronts. For experimental investigation, coupon structure was manufactured with synthetic damages inserted using two hemispherical Teflon tapes between adhesive and titanium spar. The structure was instrumented for inspection within the bond by using rectangular PZT. Experimental validation of propagation characteristics and damage sensitivity are performed using LDV measurement within the bond line. Damage detectability using rectangular piezoceramics in pitch-catch configuration within the bond is validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.