Abstract

Simple SummaryToday, the use of horse adipose tissue and Wharton’s jelly-derived mesenchymal stromal cells in veterinary regenerative medicine represents a promising tool. Cells need to be isolated and expanded in vitro in the laboratory to obtain a sufficient amount for clinical application and its characterization. In many cases, laboratories and clinics where the therapy will be performed are in different and far-flung facilities, and the cells must therefore be shipped by a courier. The authors evaluated the effects of different storage conditions, in terms of temperature, time of storage and storage solutions on cell viability, cell growth, differentiation potential and molecular characteristics. The aim was to state the most appropriate storage conditions for transporting adipose tissue and Wharton’s jelly-derived stromal cells, ensuring the maintenance of the stemness features for therapeutic application in horses. To use Mesenchymal Stromal Cells (MSCs) in equine patients, isolation and expansion are performed in a laboratory. Cells are then sent back to the veterinary clinic. The main goal of storage conditions during cell transport is to preserve their biological properties and viability. The aim of this study was to evaluate the effects of storage solutions, temperature and time on the characteristics of equine adipose tissue and Wharton’s jelly-derived MSCs. We compared two different storage solutions (plasma and 0.9% NaCl), two different temperatures (4 °C and room temperature) and three time frames (6, 24, 48 h). Cell viability, colony-forming units, trilineage differentiation, the expression of CD45 and CD90 antigens and adhesion potentials were evaluated. Despite the molecular characterization and differentiation potential were not influenced by storage conditions, viability, colony-forming units and adhesion potential are influenced in different way, depending on MSCs sources. Overall, this study found that, despite equine adipose tissue MSCs being usable after 24 h of storage, cells derived from Wharton’s jelly need to be used within 6 h. Moreover, while for adipose cells the best conservation solutions seems to be plasma, the cell viability of Wharton’s jelly MSCs declined in both saline and plasma solution, confirming their reduced resistance to conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call