Abstract
Ship routing process taking into account weather conditions is a constrained multi-objective optimization problem and it should consider various optimization criteria and constraints. Formulation of a stability-related, dynamic route optimization constraint is presented in this paper. One of the key objectives of a cross ocean sailing is finding a compromise between ship safety and economics of operation. This compromise should be taken into account by the planning procedure and proper optimization algorithm. In this research complex stability-related phenomena are adopted as the basis for the constraint set formulation in weather routing. Thus, the synchronous roll, parametric resonance, surf riding and broaching-to are considered according to the IMO MSC.1/Circ.1228 guidance. However, the dangerous resonance motion of the ship depends on her natural period of roll and a degree of tuning to the encounter wave period. This natural period strictly depends on the GZ curve shape and, consequently, on the amplitude of roll. In order to properly model the natural period of roll, a new method utilizing equivalent metacentric height is applied and incorporated into the route optimization. Sample calculations of the cross ocean routes are presented and the effect of the dynamic approach to the constraint set is demonstrated and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.