MATEC Web of Conferences | VOL. 355
Read
Ship RBF neural network sliding mode PID heading control
Abstract
In view of the inherent non-linearity, complexity, susceptibility to external wind, wave, and current interference of under-driven ships, and the difficulty of adjusting and adjusting control parameters, to improve the performance of ship’s autopilot, a kind of RBF neural network sliding mode variable structure PID controller is designed. Traditional PID control is sensitive to parameter changes, online tuning is difficult, and easy to overshoot. In order to solve this problem, combining the variable structure characteristics of PID, a differential compensation term is added to the integral term to convert the PID control parameters into three parameters with more obvious physical meanings, and then combined with the RBF neural network learning and identification function to realize online tuning and adaptive control of ship control parameters. Using MATLAB software to simulate the container ship “MV KOTA SEGAR” MMG model shows that the designed RBF neural network sliding mode PID controller can effectively eliminate the ship’s lateral deviation caused by external interference such as wind, waves, currents, etc., with high control accuracy,robustness and strong adaptability.
Concepts
External Interference PID Control Adjusting Control Parameters High Control Accuracy Traditional PID Control RBF Neural Network Control Parameters Online Tuning Lateral Deviation Strong Adaptability
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023
Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.