Abstract

The ship hull surface optimization based on the wave resistance is an important issue in the ship engineering industry. The wavelet method may provide a convenient tool for the surface hull optimization. As a preliminary study, we use the wavelet method to optimize the hull surface based on the Michel wave resistance for a Wigley model in this paper. Firstly, we express the model's surface by the wavelet decomposition expressions and obtain a reconstructed surface and then validate its accuracy. Secondly, we rewrite the Michel wave resistance formula in the wavelet bases, resulting in a simple formula containing only the ship hull surface's wavelet coefficients. Thirdly, we take these wavelet coefficients as optimization variables, and analyze the main wave resistance distribution in terms of scales and locations, to reduce the number of optimization variables. Finally, we obtain the optimal hull surface of the Wigley model through genetic algorithms, reducing the wave resistance almost by a half. It is shown that the wavelet method may provide a new approach for the hull optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call