Abstract
The authors present field measurements and the results of a three-dimensional canopy model inversion for sand shinnery oak. Spectral bidirectional radiance measurements in three spectral channels, 0.65-0.67 mu m, 0.81-0.84 mu m, and 1.62-1.69 mu m, encompassing both the complete land surface and sky hemispheres, were acquired for a sand shinnery oak plant community in west Texas. The changes in canopy reflectance that occur with variations in solar zenith angle and view direction and for two seasons of the year were evaluated. A three-dimensional radiation interaction model (TRIM) was then inverted to estimate oak leaf area index (LAI) and canopy density, expressed as percentage of cover, from the bidirectional reflectance data. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.