Abstract

Local coexistence of bees has been explained by flower resource partitioning, but coexisting bumblebee species often have strongly overlapping diets. We investigated if light microhabitat niche separation, underpinned by visual traits, could serve as an alternative mechanism underlying local coexistence of bumblebee species. To this end, we focused on a homogeneous flower resource-bilberry-in a heterogeneous light environment-hemi-boreal forests. We found that bumblebee communities segregated along a gradient of light intensity. The community-weighted mean of the eye parameter-a metric measuring the compromise between light sensitivity and visual resolution-decreased with light intensity, showing a higher investment in light sensitivity of communities observed in darker conditions. This pattern was consistent at the species level. In general, species with higher eye parameter (larger investment in light sensitivity) foraged in dimmer light than those with a lower eye parameter (higher investment in visual resolution). Moreover, species realized niche optimum was linearly related to their eye parameter. These results suggest microhabitat niche partitioning to be a potential mechanism underpinning bumblebee species coexistence. This study highlights the importance of considering sensory traits when studying pollinator habitat use and their ability to cope with changing environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.