Abstract

The pyridine nucleotides nicotinamide adenine dinucleotide [NAD(H)] and nicotinamide adenine dinucleotide phosphate [NADP(H)] simultaneously act as energy transducers, signalling molecules, and redox couples. Recent research into photosynthetic optimisation, photorespiration, immunity, hypoxia/oxygen signalling, development, and post-harvest metabolism have all identified pyridine nucleotides as key metabolites. Further understanding will require accurate description of NAD(P)(H) metabolism, and genetically encoded fluorescent biosensors have recently become available for this purpose. Although these biosensors have begun to provide novel biological insights, their limitations must be considered and the information they provide appropriately interpreted. We provide a framework for understanding NAD(P)(H) metabolism and explore what fluorescent biosensors can, and cannot, tell us about plant biology, looking ahead to the pressing questions that could be answered with further development of these tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.