Abstract
Heterogeneous information networks that consist of multi-type, interconnected objects are becoming increasingly popular, such as social media networks and bibliographic networks. The task of linking named entity mentions detected from unstructured Web text with their corresponding entities in a heterogeneous information network is of practical importance for the problem of information network population. This task is challenging due to name ambiguity and limited knowledge existing in the network. Most existing entity linking methods focus on linking entities with Wikipedia and cannot be applied to our task. In this paper, we present SHINE+, a general framework for linking named entitie S in Web free text with a H eterogeneous I nformation NE twork. We propose a probabilistic linking model, which unifies an entity popularity model with an entity object model. As the entity knowledge contained in the information network is insufficient, we propose a knowledge population algorithm to iteratively enrich the network entity knowledge by leveraging the context information of mentions mapped by the linking model with high confidence, which subsequently boosts the linking performance. Experimental results over two real heterogeneous information networks (i.e., DBLP and IMDb) demonstrate the effectiveness and efficiency of our proposed framework in comparison with the baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.