Abstract

Optical turbulence characterisation is crucial to understanding astronomical site and observational limitations. The Differential Image Motion Monitor (DIMM) is a widely used, low cost and portable instrument for measuring the total integrated seeing. We have designed and tested a variation on the DIMM design that utilises a low order Shack-Hartmann (SH) lenslet array instead of the standard two hole aperture mask. This instrument, which is comprised of readily available components, is known as SHIMM. This alternative design utilises more of the telescope aperture, in comparison to the DIMM, and therefore increases the signal to noise ratio, as well as providing a more accurate method of noise estimation. In future the instrument will be developed to provide estimation of the coherence timescale, limited turbulence altitude information, and to correct for scintillation effects on the seeing measurements. We describe the instrument and present measurements from two identical SHIMM seeing monitors, as well as a comparison with simultaneous optical turbulence profiles recorded with Stereo-SCIDAR on the 2.5m Isaac Newton Telescope, La Palma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.