Abstract

A \(Q\)-polynomial Shilla graph with \(b = 5\) has intersection arrays \(\{105t,4(21t+1),16(t+1); 1,4 (t+1),84t\}\), \(t\in\{3,4,19\}\). The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of \(Q\)-polynomial Shilla graphs with \(b = 6\) are found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.