Abstract

Shigella effectors injected into the host cell via the type III secretion system are involved in various aspects of infection. Here, we show that one of the effectors, IpaH9.8, plays a role in modulating inflammatory responses to Shigella infection. In murine lung infection model, ΔipaH9.8 mutant caused more severe inflammatory responses with increased pro-inflammatory cytokine production levels than did wild-type Shigella, which resulted in a 30-fold decrease in bacterial colonization. Binding assays revealed that IpaH9.8 has a specific affinity to U2AF 35, a mammalian splicing factor, which interferes with U2AF 35-dependent splicing as assayed for IgM pre-mRNA. Reducing the U2AF 35 level in HeLa cells and infecting HeLa cells with wild-type caused a decrease in the expression of the il-8, RANTES, GM-CSF, and il-1β genes as examined by RT-PCR. The results indicate that IpaH9.8 plays a role in Shigella infection to optimize the host inflammatory responses, thus facilitating bacterial colonization within the host epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.