Abstract

Shiga toxin–producing Escherichia coli (STEC) cause bloody diarrhea (BD), hemorrhagic colitis (HC), and even hemolytic uremic syndrome (HUS). In Nordic countries, STEC are widely spread and usually associated with gastrointestinal symptoms and HUS. The objective of this study was to investigate the occurrence of STEC in Swedish patients over 10 years of age from 2003 through 2015, and to analyze the correlation of critical STEC virulence factors with clinical symptoms and duration of stx shedding. Diarrheal stool samples were screened for presence of stx by real-time PCR. All STEC isolates were characterized by DNA microarray assay and PCR to determine serogenotypes, stx subtypes, and presence of intimin gene eae and enterohaemolysin gene ehxA. Multilocus sequencing typing (MLST) was used to assess phylogenetic relationships. Clinical features were collected and analyzed using data from the routine infection control measures in the county. A total of 14,550 samples were enrolled in this 12-years period study, and 175 (1.2%) stools were stx positive by real-time PCR. The overall incidence of STEC infection was 4.9 cases per 100,000 person-years during the project period. Seventy-five isolates, with one isolate per sample were recovered, among which 43 were from non-bloody stools, 32 from BD, and 3 out of the 75 STEC positive patients developed HUS. The presence of stx2 in both stools and isolates were associated with BD (p = 0.008, p = 0.05), and the presence of eae in isolates was related to BD (p = 0.008). The predominant serogenotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Isolates from HUS were O104:H4 and O98: H21 serotypes. Phylogenetic analysis revealed our strains were highly diverse, and showed close relatedness to HUS-associated STEC collection strains. In conclusion, the presence of stx2 in stool was related to BD already at the initial diagnostic procedure, thus could be used as risk predictor at an early stage. STEC isolates with stx2 and eae were significantly associated with BD. The predominant serotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Nevertheless, the pathogenic potential of other serotypes and genotypes should not be neglected.

Highlights

  • Shiga toxin–producing Escherichia coli (STEC) cause diseases ranging in severity from asymptomatic infection, non-bloody diarrhea (NBD) to bloody diarrhea (BD), hemorrhagic colitis (HC), and even life-threatening hemolytic uremic syndrome (HUS) (Tarr et al, 2005)

  • The presence of stx2 in stool samples was associated with BD (p = 0.008), while a higher positive rate of stx1+stx2 was detected in non-bloody stool (NBS) samples (p = 0.008; Table 2)

  • 30.3 cases per 100,000 inhabitants were reported in Halland in 2016, while the reported incidence in Örebro County was 0 (Peter Nolskog and Cecilia Jernberg, 2017)

Read more

Summary

Introduction

Shiga toxin–producing Escherichia coli (STEC) cause diseases ranging in severity from asymptomatic infection, non-bloody diarrhea (NBD) to bloody diarrhea (BD), hemorrhagic colitis (HC), and even life-threatening hemolytic uremic syndrome (HUS) (Tarr et al, 2005). In 2011, a large outbreak caused by a Shiga toxin 2–producing E. coli serotype O104:H4 resulted in 3,816 STEC cases in Germany, and subsequently spread throughout other European countries including Sweden (Guy et al, 2012, 2013). This highlighted the clinical significance of other STEC serotypes than O157 as a great threat to public health. Epidemiological studies suggest that stx along with the presence of eae is more often associated with severe disease and development of HUS (Orth et al, 2007). The prevalence of virulence factors in clinical strains and their role in disease development are not yet fully understood

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call