Abstract

Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that live in the gastrointestinal tract of wildlife and cattle without causing disease. In humans, their colonization and infection lead to life-threatening disease. We investigated the occurrence of STEC in wild ungulates (wild boar, red deer and roe deer) inhabiting areas differently impacted by anthropogenic activities. STEC were detected in 9% (n = 6) of the samples and were recovered from the three species: 1 of wild boar, 4 of red deer and 1 of roe deer. All the isolates (n = 7) were non-O157 STEC encoding stx1 (n = 2; 29%) and/or stx2 genes (n = 6; 86%). O27:H30 was the most frequent serotype identified, followed by O146:H21 and O146:H28. Two STEC were O-untypable: ONT:H28 and ONT:H52. The phylo-groups identified were B1 (n = 3), E (n = 3) and F (n = 1). All the isolates recovered were susceptible to the different classes of antibiotics tested, although resistance genes were found in two strains. Apart from stx, all STEC encode many virulence factors (VF), particularly adhesins and/or other toxins. A strain with 13 VF collected from roe deer has a high enterohemorrhagic risk due to the presence of intimin, hemolysin and protease effectors genes. Enterohemorrhagic E. coli (EHEC) are implicated in the major cases of human infection and mortality, highlighting the zoonotic potential of wildlife-associated STEC.Wild ungulates are reservoirs of STEC potentially pathogenic to humans. Therefore, following the One Health concept, it is crucial to establish worldwide local monitoring programs that will benefit human, animal and environmental health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call