Abstract

The pathogenesis of Shiga toxin (Stx)-mediated childhood hemolytic uremic syndrome (HUS) is not fully delineated, although current evidence implicates a prothrombotic state. We hypothesized that the tissue factor (TF) pathway plays a major role in the pathophysiology of HUS. We measured cell surface TF activity in response to tumor necrosis factor-alpha (TNF-alpha) (20 ng mL(-1), 2-144 h), Stx-1 (10(-11) mol L(-1), 4-144 h), or their combination (TNF-alpha 22 h and Stx-1 for the last 0.5-4 h of TNF-alpha incubation) on human glomerular (microvascular) endothelial cells (HGECs) and human umbilical vein (macrovascular) endothelial cells (HUVECs). We observed that while TNF-alpha caused an increase in cell surface TF activity on both cell types, the combination of TNF-alpha and Stx-1 differentially affected HGECs. On these cells, TF activity was increased further by 2.67 +/- 0.38-fold (n = 38, P < 0.001), consistent with our parallel observation that Stx-1 binds to HGECs but not to HUVECs. Anti-TF antibody abolished functional TF while anti-tissue factor pathway inhibitor antibody enhanced TF activity. Stx-1 alone did not induce TF activity on either cell type. Measurement of TF antigen levels and quantitative real-time polymerase chain reaction demonstrated that exposure to TNF-alpha markedly increased TF protein and TF mRNA for HGECs, but the exposure to the combination of TNF-alpha and Stx-1 did not increase further the amount of either TF protein or TF mRNA. We conclude that cytokine-activated HGECs, but not HUVECs, undergo a significant augmentation of cell surface TF activity following exposure to Stx, suggesting an important role for TF in the coagulopathy observed in HUS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.