Abstract
Shiga toxin type 2 (Stx2) is the primary virulence factor produced by Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), which causes epidemic outbreaks of gastrointestinal sickness and potentially fatal sequela hemolytic uremic syndrome (HUS). Most studies on Stx2-induced apoptosis have been performed with holotoxins, but the mechanism of how the A and B subunits of Stx2 cause apoptosis in cells is not clear. Here, we found that Stx2 A-subunit (Stx2A) induced mitochondrial damage, PINK1/Parkin-dependent mitophagy and apoptosis in Caco-2 cells. PINK1/Parkin-dependent mitophagy caused by Stx2A reduced apoptosis by decreasing the accumulation of reactive oxidative species (ROS). Mechanistically, Stx2A interacts with Tom20 on mitochondria to initiate the translocation of Bax to mitochondria, leading to mitochondrial damage and apoptosis. Overall, these data suggested that Stx2A induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells and that mitophagy caused by Stx2A ameliorates apoptosis by eliminating damaged mitochondria. These findings provide evidence for the potential use of Tom20 inhibition as an anti-Shiga toxin therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.