Abstract

Across the conterminous United States (U.S.), the composition of atmospheric nitrogen (N) deposition is changing spatially and temporally. Previously, deposition was dominated by oxidized N, but now reduced N (ammonia [NH3] + ammonium [NH4+]) is equivalent to oxidized N when deposition is averaged across the entire nation and, in some areas, reduced N dominates deposition. To evaluate if there are effects of this change on stream chemistry at the national scale, estimates of N deposition form (oxidized or reduced) from the National Atmospheric Deposition Program Total Deposition data were coupled with stream measurements from the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessments (three stream surveys between 2000 and 2014). A recent fine-scaled N input inventory was used to identify watersheds (<1000 km2) where atmospheric deposition is the largest N source (n = 1906). Within these more atmospherically-influenced watersheds there was a clear temporal shift from a greater proportion of sites dominated by oxidized N deposition to a greater proportion of sites dominated by reduced forms of N deposition. We found a significant positive correlation between oxidized N deposition and stream NO3− concentrations, whereas the correlation between reduced N deposition and stream NO3− concentrations were significant but weaker. Sites dominated by atmospheric inputs of reduced N forms had higher stream total organic N and total N despite lower total N deposition on average. This higher stream concentration of total N is mainly driven by the higher concentration of total organic N, suggesting an interaction between elevated reduced N in deposition and living components of the ecosystem or soil organic matter dynamics. Regardless of the proportion of reduced to oxidized N forms in deposition, stream NH4+ concentrations were generally low, suggesting that N deposited in a reduced form is rapidly immobilized, nitrified and/or assimilated by watershed processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.