Abstract
Biochar, a valuable product from the pyrolysis of agricultural and forestry residues, has been widely applied as soil amendment. However, the effect of different types of biochar on soil microorganisms and associated biochemical processes in paddy soil remains ambiguous. In this study, we investigated the impact of biochars derived from different feedstocks (rice straw, orange peel and bamboo powder) on the dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in paddy soil within 90 days of anaerobic incubation. Results showed that biochar amendment overall inhibited the accumulation of SCFAs while accelerating the Fe(III) reduction process in paddy soil. In addition, 16S rRNA gene sequencing results demonstrated that the α-diversity of the bacterial community significantly decreased in response to biochar amendments at day 1 but was relatively unaffected at the end of incubation, and incubation time was the major driver for the succession of the bacterial community. Furthermore, significant correlations between parameters (e.g. SCFAs and iron concentration) and bacterial taxa (e.g. Clostridia, Syntrophus, Syntrophobacter and Desulfatiglans) were observed. Overall, our findings demonstrated amendment with different types of biochar altered SCFA profile, Fe(III) reduction and bacterial biodiversity in rice paddy soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.