Abstract

The explosive growth in nanomaterial use will bring about their increased release into terrestrial ecosystems. Metal engineered nanomaterials (ENMs) that gain entry into these environments may alter the composition and activities of resident natural bacterial communities. To assess changes in community level physiological profiles (CLPP) of microbial communities in soils exposed to metal ENMs, Biolog EcoPlates were used in this exploratory comparative study. The CLPP is a rapid screening technique to characterise functional differences among heterotrophic microbial communities based on variable substrate utilization. The impacts of three metal ENMs, silver, titanium dioxide and zinc oxide, on bacterial communities were investigated using three soil types from Maharashtra, India. Metabolic diversity of bacterial communities was impacted in the soils in presence of silver and zinc oxide, but not in presence of titanium dioxide nanoparticles. Diversity indices, viz., Shannon's index, Evenness index and Simpson's index also showed significant differences in the presence of silver and zinc oxide nanoparticles. Principal component analysis revealed changes in metabolic profiles in the presence of silver nanoparticles. This study also shows that testing ecotoxicity of nanoparticles using readily culturable bacteria is a practical approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call