Abstract

Preadolescent animals display protracted hormonal stress responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis compared to adults. Though the mechanisms that underlie this shift in stress reactivity are unknown, reduced glucocorticoid-dependent negative feedback on the HPA axis has been posited to contribute to this differential responsiveness. As the glucocorticoid receptors (GRs) are integral to this feedback response, we hypothesize that prior to puberty there will be fewer GRs in the neural-pituitary network that mediate negative feedback. To test this hypothesis we measured GR protein levels in the brains of preadolescent (28 days old), midadolescent (40 days old) and adult (77 days old) male rats via immunohistochemistry. Additionally, we assessed stress-induced plasma adrenocorticotropic hormone and corticosterone in prepubertal (30 days old) and adult (70 days old) male rats and examined GR protein levels via Western blot in the brain and pituitary. We found that despite substantial adolescent-related changes in hormonal responsiveness, no significant differences were found between these ages in GR protein levels in regions that are important in negative feedback, including the medial prefrontal cortex, paraventricular nucleus of the hypothalamus, hippocampal formation, and pituitary. These data indicate that the extended hormonal stress response exhibited by preadolescent animals is independent of significant pubertal changes in GR protein levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call