Abstract

Montane species are generally predicted to respond to climate change via upslope movement. Elevational range shifts of birds rarely have been examined in arid regions. Here, we examine shifts in the elevational distributions of breeding birds from two regions of the Great Basin, a desert in the western USA, over 10 to 20 years. We collected data annually from 2001 to 2020, a relatively long and consistent time series that is uncommon in research on distributional shifts. We used single‐species occupancy models of 32 bird species to examine shifts along the full elevational gradient (1650–3200 m a.s.l.) and within the lowest and highest edges (25%) of the gradient. We then conducted simulations to test whether population stochasticity could confound inferences about shifts. We examined whether temperature, precipitation, and primary productivity (normalized difference vegetation index) were associated with occupancy and shifts. The elevational distributions of 23 species shifted, and simulations indicated that shifts in the distributions of 18 species were unlikely to be stochastic. The majority of shifts in the western Great Basin were downslope, whereas those in the central Great Basin were upslope. More shifts occurred at the edges of the elevational gradient than along the full gradient. Elevational shifts lacked a consistent climate‐response signal, but those of some species appeared to follow changes in primary productivity. We found regional differences in elevational shifts and climate associations, and our work suggests that these desert bird populations may be relatively resilient to climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call