Abstract

The diversity, composition and ecological guilds of soil fungal communities in relation to revegetation were assessed during an open-cast mining dump reclamation chronosequence of the soil <1, 5, 10, 15 and 20 years after the start of reclamation. Soil pH and electrical conductivity, total nitrogen (TN), soil organic carbon (SOC), available potassium (AK), and available phosphorus (AP) contents, and soil phosphatase (Pha), urease (U) and invertase (INV) activities were measured. Using high-throughput sequence analysis on internal transcribed spacer (ITS) sequences, 1059 soil fungal operational taxonomic units (OTUs) were identified belonging to 64 orders and these were further categorized by ecological guild. Soil fungal diversity indices were significantly different between the early (<1 year) and later reclamation communities. Nonmetric multidimensional scaling (NMDS) analysis indicates that the composition and ecological guilds of soil fungal communities were significantly different early in the process and at the end of reclamation (P < 0.05). Co-occurrence network and structural equation model analyses show that soil fungal community structure and ecological guilds were correlated with edaphic properties and had an indirect effect on soil available nutrients through direct action on soil enzymes. Overall, the data suggest that soil fungal community composition and function within an open-cast coal mining dump reclamation chronosequence changed during the period following artificial re-vegetation, with interactions between edaphic properties and soil fungal communities associated with these changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call