Abstract

The ecology of functional features highlights the importance of the leaf economic spectrum (LES) in understanding plant trade-offs between conservative and commercial resource use. However, it is still unclear whether changes in the plant attributes of various vegetative organs can be altered and whether the plant economic spectrum (PES) is categorized by multiple vegetative organs. We investigated a total of 12 functional features of 174 woody tree species, with leaf and stem attributes, on Hainan Island. We used principal component analysis (PCA) to analyze the changes in attributes and connections to understand how the plant trade-offs differ. We detected that stem organic matter (SOM) and stem organic carbon (SOC) contributed most to the first principal component, followed by leaf organic matter (LOM) and leaf organic carbon (LOC). Using Spearman correlation analysis, we determined that leaf total nitrogen (LTN) and specific leaf area (SLA), LTN and leaf total phosphorus (LTP), and finally stem total nitrogen (STN) and stem total phosphorus (STP) were positively significantly correlated. These significant variations in the traits of nutrients are regulated, while the morphological traits of aboveground vegetative organs are diverse. The coexistence of species and community assembly can increase our knowledge on the tropical coastal secondary forests. Furthermore, our outcomes can help us to better understand the restoration of habitats and green infrastructure design, suggesting that selecting different species across multiple trait axes can help ensure functionality at the maximum level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call