Abstract

Evaluating AI is a challenging task, as it requires an operative definition of intelligence and the metrics to quantify it, including amongst other factors economic drivers, depending on specific domains. From the viewpoint of AI basic research, the ability to play a game against a human has historically been adopted as a criterion of evaluation, as competition can be characterized by an algorithmic approach. Starting from the end of the 1990s, the deployment of sophisticated hardware identified a significant improvement in the ability of a machine to play and win popular games. In spite of the spectacular victory of IBM’s Deep Blue over Garry Kasparov, many objections still remain. This is due to the fact that it is not clear how this result can be applied to solve real-world problems or simulate human abilities, e.g., common sense, and also exhibit a form of generalized AI. An evaluation based uniquely on the capacity of playing games, even when enriched by the capability of learning complex rules without any human supervision, is bound to be unsatisfactory. As the internet has dramatically changed the cultural habits and social interaction of users, who continuously exchange information with intelligent agents, it is quite natural to consider cooperation as the next step in AI software evaluation. Although this concept has already been explored in the scientific literature in the fields of economics and mathematics, its consideration in AI is relatively recent and generally covers the study of cooperation between agents. This paper focuses on more complex problems involving heterogeneity (specifically, the cooperation between humans and software agents, or even robots), which are investigated by taking into account ethical issues occurring during attempts to achieve a common goal shared by both parties, with a possible result of either conflict or stalemate. The contribution of this research consists in identifying those factors (trust, autonomy, and cooperative learning) on which to base ethical guidelines in agent software programming, making cooperation a more suitable benchmark for AI applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.