Abstract
The modification of the thermal conductivity and melting temperature of unrelaxed amorphous Ge films on Si substrates upon laser-induced relaxation and crystallization is presented. Real-Time Reflectivity (RTR) measurements are used to determine experimentally both the melting threshold and the melt durations, and the finite element method is used to simulate the laser-induced heat-flow process. A thermal conductivity ofk=0.010 W dem K is determined for the unrelaxed material by fitting the experimental melting thresholds of unrelaxed films of different thicknesses. A similar procedure applied to the amorphous relaxed and crystallized materials lead to a shift to higher values of both the thermal conductivity and the melting temperature. In order to achieve a good fit of the experimental melt durations, it was necessary to assume a large degree of undercooling prior to solidification. The role of undercooling in the solidification process is finally discussed in terms of its dependence on the faser energy density and the high thermal conductivity of the substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Physics A Materials Science and Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.