Abstract

Medium-chain-length-polyhydroxyalkanoic acids (MCL-PHAs) formed in Pseudomonas spp. have a rather broad distribution of monomer-units whose precursors are supplied via beta-oxidation degradation of MCL fatty acids fed as the carbon source and/or via PhaG enzyme catalyzing the acyl-group transfer from 3-hydroxyacyl-ACPs derived from acetyl-CoA to coenzyme A. It was found that salicylic acid (SA), in a concentration dependent manner, suppressed the accumulation of PHA in Pseudomonas fluorescens BM07 from fructose as well as shifted the distribution of monomer-units derived from a MCL fatty acid co-added as carbon source (e.g., 11-phenoxyundecanoic acid (11-POU)) to longer monomer-units. Both SA and acrylic acid were found to induce high accumulations of 3-ketohexanoic acid in BM07 wild-type cells grown with n-hexanoic acid as well as to inhibit the formation of acetyl-CoA from acetoacetyl-CoA by BM07 cell extract, suggesting that 3-ketoacyl-CoA thiolase is their common beta-oxidation target. The structural motif of acrylic acid present in the molecular structure of SA may self-explain the similar actions of the two inhibitors. A comparison of monomer modulation between BM07 wild-type and DeltaphaG mutant cells grown on the mixtures of fructose and 11-POU revealed that both PhaG and beta-oxidation inhibitor may play a critical role in the synthesis of PHA with longer side-chain omega-functional substitutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.