Abstract

In many coastal regions, mean coastal atmospheric and water temperatures are projected to shift as climate change ensues. Interaction strengths between organisms are likely to change along with environmental changes, given interspecific heterogeneity in responses to physico-chemical variables. Biological interaction outcomes have the potential to alter food web production and trophic level biomass distribution. This is particularly pertinent for key species that are either abundant or play disproportionately large roles in ecosystem processes. Using a functional response approach, we quantified the effects of shifting temperatures on interactions between key mysid species-sympatric in their distribution across a biogeographic transition zone along the east coast of South Africa. The Rhopalophthalmus terranatalis functional response type toward Mesopodopsis wooldridgei prey was independent of temperature, with all treatments producing Type II functional responses. Temperature effects on predator-prey dynamics were, however, evident as interaction strength was greatest at 21 °C, as measured by maximum feeding rates. Unlike maximum feeding rate, attack rates increased linearly with increasing temperature across the experimental treatments. Our findings suggest that interaction strength between the mysid shrimp species is likely to vary spatially along the current length of their sympatric distribution and temporally in certain regions where temperatures are projected to change. Such experimental interaction investigations are becoming increasingly important given our relatively poor understanding of the consequences of environmental change for effects on interactions among species and their wider ecosystem implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.