Abstract
A new algorithm, the "shifted Rayleigh filter," is introduced for two- or three-dimensional bearings-only tracking problems. In common with other "moment matching" tracking algorithms such as the extended Kalman filter and its modern refinements, it approximates the prior conditional density of the target state by a normal density; the novel feature is that an exact calculation is then performed to update the conditional density in the light of the new measurement. The paper provides the theoretical justification of the algorithm. It also reports on simulations involving variants on two scenarios, which have been the basis of earlier comparative studies. The first is a "benign" scenario where the measurements are comparatively rich in range-related information; here the shifted Rayleigh filter is competitive with standard algorithms. The second is a more "extreme" scenario, involving multiple sensor platforms, high-dimensional models and noisy measurements; here the performance of the shifted Rayleigh filter matches the performance of a high-order bootstrap particle filter, while reducing the computational overhead by an order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.