Abstract

In wall-bounded turbulent flow simulations, periodic boundary conditions combined with insufficiently long domains lead to persistent spanwise locking of large-scale turbulent structures. This leads to statistical inhomogeneities of 10%–15% that persist in time averages of 60 eddy turnover times and more. We propose a shifted periodic boundary condition that eliminates this effect without the need for excessive streamwise domain lengths. The method is tested based on a set of direct numerical simulations of a turbulent channel flow, and large-eddy simulations of a high Reynolds number rough-wall half-channel flow. The method is very useful for precursor simulations that generate inlet conditions for simulations that are spatially inhomogeneous, but require statistically homogeneous inlet boundary conditions in the spanwise direction. The method’s advantages are illustrated for the simulation of a developing wind-farm boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.