Abstract
When investigating voltage and current stresses in critical main circuit components during faults of the converter, a detailed equivalent model capable of representing the balancing control strategies of the capacitor voltages on the submodule level, along with blocking and delocking, is always necessary. Among previously proposed equivalent models of the modular multilevel converter (MMC), only submodule averaged models (SAMs) can capture interested inner dynamics inside each arm. However, the simulation accuracy of SAMs is not always satisfactory, especially when the time step is larger than 10 $\mu$ s. In order to further improve the simulation accuracy with guaranteed simulation efficiency, the shifted frequency modeling of the half- and full-bridge hybrid MMC is proposed in this paper. Therein, each submodule is represented by Thevenin equivalents derived by submodule dynamic phasors. The arm of the MMC is represented by Norton equivalents to guarantee the efficiency, considering both normal and dc-blocking conditions. The effectiveness of the proposed model in terms of accuracy and efficiency is validated by simulating an MMC-based HVdc transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.