Abstract
Two new eight-layer hexagonal perovskites with the composition Ba8MNb6O24 (M = Fe and Cu) are synthesized by solid-state reaction at 1350-1400 °C. Their crystal structures have been investigated using X-ray and electron diffractions as well as high-resolution transmission electron microscopy. Although both compounds have similar M2+ size, Ba8FeNb6O24 and Ba8CuNb6O24 adopt shifted and twinned structures, respectively. Through comparison with the reported shifted Ba8MNb6O24 (M = Mn, Co, and Zn) and twinned Ba8NiNb6O24 as well as inexistent Ba8Mg(Nb/Ta)6O24, we elucidate that the twin-shift competition of Ba8MNb6O24 family could be related with multiple chemical factors including tolerance factors, B-cationic size difference, entropy variation with B-cation and vacancy disorder, Jahn-Teller distortion, and FSO B-B d orbit interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.