Abstract
We consider the biharmonic Dirichlet problem on a polygonal domain. Regularity estimates in terms of Sobolev norms of fractional order are proved. The analysis is based on new interpolation results which generalizes Kellogg’s method for solving subspace interpolation problems. The Fourier transform and the construction of extension operators to Sobolev spaces on R 2 are used in the proof of the interpolation theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.