Abstract

The effect of boundaries on the nematic–isotropic phase transition temperature in a melt of a metallomesogenic complex was studied for the first time. This was done by comparison of the electro-optical constant of the isotropic phase with the dielectric and optical anisotropy of the nematic phase on the basis of the Landau–de Gennes theory. In a real experiment, the two liquid phases (nematic and isotropic ones) coexist in a range of several degrees around the transition. According to polarization microscopy data, the phase transition temperature decreases by more than 10°C as the metallomesogen layer thickness is reduced from 200 to 5 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.