Abstract

The research on gaseous VOCs biofilters has often concentrated on process optimization. However, the microbial community change upon operating conditions is not well understood. In this study, three lab-scale biofilters treating gaseous toluene were operated for 66 days with different inocula under changes in inlet loads and nitrogen sources. Three biofilters were inoculated with activated sludge, river sediment or microbial consortia, respectively. The microbial community differed a lot initially but gradually deviated toward similar structures with the same dominant microorganisms, i.e. Proteobacteria, Actinobacteria (phylum level) and Rhodococcus,Pseudomonas(genus level). Among three biofilters, the two biofilters inoculated with activated sludge and river sediment showed higher microbial diversity, better VOCs removal performance and higher metabolic activity. Higher relative abundance of Alcanivorax (3% compared with lower than 0.03%), Pimelobacte (0.05% compared with lower than 0.01%)were detected under low inlet load, and Zoogloea(0.1%), Alkaliphilus(0.2%) were detected when the inlet load was increased. the abundance of Pseudomonasdecreased from 14% to 2% when ammonia was used as nitrogen source instead of nitrate, meanwhile the abundance of Bacillus and Gordoniaincreased from 0.01% to 0.05% and 0.8% to 5.8% respectively. Some special organisms were observed i.e. the intestinal microorganism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.