Abstract
The Lanczos method with shift-invert technique is exploited to approximate the symmetric positive semidefinite Toeplitz matrix exponential. The complexity is lowered by the Gohberg–Semencul formula and the fast Fourier transform. Application to the numerical solution of an integral equation is studied. Numerical experiments are carried out to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.