Abstract

The shift-invert Arnoldi method is employed to generate an orthonormal basis from the Krylov subspace corresponding to a real Toeplitz matrix and an initial vector. The vectors and recurrence coefficients produced by this method are exploited to approximate the Toeplitz matrix exponential. Toeplitz matrix inversion formula and rapid Toeplitz matrix-vector multiplications are utilized to lower the computational costs. For convergence analysis, a sufficient condition is established to guarantee that the error bound is independent of the norm of the matrix. Numerical results are given to demonstrate the efficiency of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.