Abstract

I consider the effect of a small concentration of a molecule, such as a short-chain alcohol, on the miscibility transition temperature of a giant plasma membrane vesicle. For concentrations sufficiently small such that the system can be treated as a dilute solution, the change in transition temperature is known to depend upon the extent of the molecule's partition into the coexisting liquid-disordered and liquid-ordered phases. Preferential partitioning into the former decreases the miscibility temperature, while preferential partitioning into the latter causes an increase. The analysis, combined with calculated values of the partition coefficient of saturated chains, illuminates the results of recent experiments on the change in miscibility transition temperatures with changing alcohol chain length, and makes several testable predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.