Abstract

The long-term persistence of hybridogenetic systems, in which one genetic lineage is dependent on another as a sperm host, is paradoxical because they require continual coexistence between ecological competitors. Several species of ants display a social form of hybridogenesis, in which two distinct genetic lineages obligately interbreed to produce sterile workers, while intra-lineage progeny become the reproductives. A recent model suggests that persistence of such a system depends on the relative strengths of negative frequency-dependent selection acting during colony growth and positive frequency-dependent selection during reproduction. We used path analysis to investigate the effect of lineage frequency on reproductive output and colony sex ratio over a single reproductive season in a natural population of the H1/H2 lineage pair in the genus Pogonomyrmex. Results suggest that lineage frequency does impact reproduction via two opposing routes: the more common lineage procures more same-lineage mates, resulting in a higher proportion of same-lineage mates increases reproduction through higher queen-egg availability, but the rarer lineage procures more alternate-lineage mates, yielding a more genetically diverse worker caste that increases productivity. As a result, lineage frequency has only a weakly positive overall effect on colony reproduction, and overall frequency-dependence in this system across the entire life cycle is likely to be negative as predicted by the persistence model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.