Abstract

A bulk material without inversion symmetry can generate a direct current under illumination. This interface-free current generation mechanism, referred to as the bulk photovoltaic effect (BPVE), does not rely on p-n junctions. Here, we explore the shift current generation, a major mechanism responsible for the BPVE, in single-element two-dimensional (2D) ferroelectrics represented by phosphorene-like monolayers of As, Sb, and Bi. The strong covalency, small band gap, and large joint density of states afforded by these elemental 2D materials give rise to large shift currents, outperforming many state-of-the-art materials. We find that the shift current, due to its topological nature, depends sensitively on the details of the Bloch wave functions. It is crucial to consider the electronic exchange-correlation potential beyond the generalized gradient approximation as well as the spin-orbit interaction in density functional theory calculations to obtain reliable frequency-dependent shift current responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.