Abstract

With the invention of elliptic guides, the neutron flux at instruments can be increased significantly even without sacrificing resolution. In addition, the phase space homogeneity of the delivered neutrons is improved. Using superpolished metal substrates that are coated with supermirror, it is now possible to install neutron guides close to the moderator thus decreasing the illumination losses of the guide and reducing the background because the entrance window of the elliptic guide can be decreased significantly. We have performed Monte Carlo simulations using the program package MCNP5 to calculate the shielding requirements for an elliptic guide geometry assuming that the initial guide section elements are composed of Al substrates. We show that shielding made from heavy concrete shields the neutron and γ -radiation effectively to levels below 1 μ Sv / h . It is shown that the elliptic geometry allows to match the phase space of the transported neutrons easily to the needs of the instruments to be installed. In particular it is possible to maintain a compact phase space during the transport of the neutrons because the reflection losses are strongly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.