Abstract

Since 2016, electromagnetic interference (EMI) of personal dust monitors (PDMs) with magnetic proximity detection systems (PDSs) has been observed in underground coal mines. The EMI causes the magnetic field measurements of a PDS to change, which, in turn, alters the calculated location of the miner relative to the machine. Any altered location calculation can potentially cause the PDS to fail to warn a worker who is at an unsafe distance from the machine, arousing a serious concern on safety hazard caused by EMI in underground mines. The search for EMI mitigation strategies led to the development and use of large shielding pouches and boxes to hold the entire PDM to reduce its magnetic emission. Research on these pouches and boxes found that although they were able to reduce the emitted radiation from the PDM, they also disturbed the magnetic field of the PDS, affecting its performance. Researchers from the National Institute for Occupational Safety and Health (NIOSH) have focused on shielding internal PDM components rather than shielding the entire PDM. The PDM air pump motor is one of the PDM components that has been identified as a major source of electromagnetic radiation and has been selected for further study and tests. The measurements show that a small copper or aluminum foil enclosure can effectively reduce the magnetic emission of the motor by between 50 and 85% at 73 kHz. This study compares the test results of the air pump motor with various cost-effective shielding materials. The data provided in this paper can serve as a reference for shielding enclosure design of the PDM air pump motor to reduce its electromagnetic emission as one form of EMI mitigation strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call