Abstract

UV light has been invoked as a source of energy for driving prebiotic chemistry, but such high energy photons are also known to cause damage to biomolecules and their precursors. One potential mechanism for increasing the lifetime of UV-photounstable molecules is to invoke a protection or shielding mechanism. UV shielding could either occur by the molecule in question itself (self-shielding) or by the presence of other UV-absorbing molecules. We investigate and illustrate these two shielding mechanisms as means of increasing the lifetime of 2-aminooxazole (AO), a prebiotic precursor molecule moderately susceptible to UV photodamage, with an expected half-life of 7 h on the surface of the early Earth. AO can be protected by being present in high concentrations, such that it self-shields. AO can similarly be protected by the presence of UV-absorbing nucleosides; the degree of protection depends on the concentration and identity of the nucleoside. The purine nucleosides (A, G, and I) confer more protection than the pyrimidines (C and U). We find that 0.1 mM purine ribonucleosides affords AO about the same protection as 1 mM AO self-shielding, corresponding to a lifetime enhancement of 2–3×. This suggests that only a modest yield of nucleosides can potentially allow for protection of UV photounstable molecules, and therefore this could be a plausible mechanism for protecting sensitive molecules while prebiotic synthesis is occurring simultaneously. Our findings suggest that both synthetic and degradative reactions can proceed at the same time, given various degrees of shielding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call